Highly Selective Partial Oxidation of Methane to Methyl Trifluoroacetate

M. N. Vargaftik, I. P. Stolarov, and I. I. Moiseev*

N. S. Kurnakov Institute of General and Inorganic Chemistry, USSR Academy of Sciences, Moscow 117907, USSR

Methane has been oxidized stoicheiometrically by cobalt(m) trifluoroacetate in CF_3CO_2H solution at 150–180 °C and 10–40 atm to give methyl trifluoroacetate in 90 ± 10% yield based on Co^{III}, which is reduced to Co^{II}; in the presence of O_2 (1–5 atm) the reaction becomes catalytic with respect to the cobalt(m) salt, giving methyl trifluoroacetate as the sole product of the oxidation of methane by dioxygen.

The reaction of alkanes with transition metal complexes is an effective method for the oxidative functionalization of methane and its homologues under mild conditions.^{1,2} Recently, methane was found to be oxidized by Pd^{II} acetate in trifluoroacetic acid solution at 80 °C and 56—70 atm to give methyl trifluoroacetate in 60% yield after several hours³ or 4 days.⁴ Our attempts to reproduce this result were unsuccessful; only traces of CF₃CO₂Me were found, even after 10 days under the above conditions. Unknown admixtures in the reagents are presumed to be responsible for the difference between our results and those cited.^{3,4}

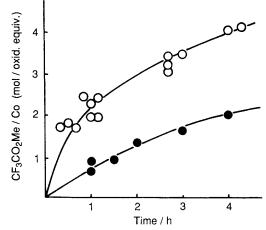
In our search for transition metal reagents capable of partial methane oxidation under mild conditions, we have studied the interaction of Mn^{III}, Fe^{III}, Co^{III}, Cu^{II}, and Pb^{IV} trifluoroacetates with CH₄ in CF₃CO₂H solution. Some of these transition metal ions have been used previously as effective initiators of radical-chain oxidation of higher alkanes by dioxygen.⁵ Cobalt(III) and manganese(III) salts are known to oxidize C₄–C₁₀ alkanes in CF₃CO₂H solution.⁶ Trifluoroacetic acid functions both as a non-oxidizable solvent and as a trapping reagent for fixation of the products of partial methane oxidation.

The reaction between methane and 0.1-0.3 M solutions of the metal trifluoroacetates in CF₃CO₂H was carried out in sealed glass tubes at 100-200 °C and 10-40 atm of initial CH₄ pressure followed by GLC analysis of the gaseous and liquid products. These experiments showed that methane was oxidized at 150-180 °C by all the metal salts studied, with the exception of Fe(OCOCF₃)₃, to give methyl trifluoroacetate (Table 1). CF₃CO₂Me was identified by GLC and ¹H NMR spectroscopy both directly in the reaction solutions and as methanol in the hydrolysis products. Carbon dioxide was detected in the oxidation products, but this could be also formed by decarboxylation of CF₃CO₂H or the CF₃CO₂⁻ anion in the presence of the metal ions studied.

The proportion of CO_2 formed by methane oxidation could not be determined directly by comparing the quantity of CH_4 consumed with that of CF_3CO_2Me formed, because of the 10to 50-fold molar excess of CH_4 over metal ion taken. Nevertheless, in the case of CO^{III} trifluoroacetate the origin of CO_2 was recognized definitively, methyl trifluoroacetate

Table 1. Yield of CF₃CO₂Me from partial oxidation of methane by metal trifluoroacetates in CF₃CO₂H solution ($p_{init}^{CH_4}$ 30 atm, 180 °C, 3 h).

Metal salt	CF ₃ CO ₂ Me yield, % based on metal oxid. equivalent
$Pd(OCOCF_3)_2$	≤0.1
$Mn(OCOCF_3)_3$	30 ± 5
$Fe(OCOCF_3)_3$	0
$Co(OCOCF_3)_3$	90 ± 10
$Cu(OCOCF_3)_2$	~0.1
$Pb(OCOCF_3)_4$	10 ± 3


being obtained in *ca.* 90% yield based on Co^{III} (see Table 1), according to equation (1). In the absence of methane, CF₃CO₂Me was found to be relatively stable towards oxidation by Co^{III} under the same experimental conditions: *ca.* 100% of the CF₃CO₂Me introduced (0.1 \times in CF₃CO₂H solution) was recovered after the maximal period (6 h) for the oxidation of CH₄. These facts led us to the conclusion that methane was oxidized stoicheiometrically by Co^{III} to give CF₃CO₂Me [equation (1)], without CO₂ formation. This partial oxidation of methane is thought to be more selective than the known reactions involving transition metal ions.^{1--4,6,7}

$$CH_4 + 2 Co(OCOCF_3)_3 \rightarrow CH_3OCOCF_3 + 2 Co(OCOCF_3)_2 + CF_3CO_2H \quad (1)$$

Further experiments with Co(OCOCF₃)₃ showed that addition of O₂ (1—5 atm) to CH₄ resulted in a yield of CF₃CO₂Me exceeding that expected for the stoicheiometric reaction of equation (1). Cobalt(II) trifluoroacetate was also found to be a suitable starting form of the catalyst for CH₄ oxidation to CF₃COOMe when O₂ was added. Under CH₄ + O₂ atmosphere, methyl trifluoroacetate was formed at approximately the same rate in CF₃CO₂H solutions containing either Co^{III} or Co^{II} salts. These facts could be explained by the re-oxidation of Co^{II} to Co^{III} by dioxygen [equation (2)].

$$2 \text{ Co}(\text{OCOCF}_{3})_{2} + \frac{1}{2} \text{ O}_{2} + 2 \text{ CF}_{3}\text{CO}_{2}\text{H} \rightarrow 2 \text{ Co}(\text{OCOCF}_{3})_{3} + \text{H}_{2}\text{O} \quad (2)$$

The combination of this reaction with the reduction of Co^{III} by methane [equation (1)] results in a catalytic oxidation of CH₄ by O₂ to give methyl trifluoroacetate [equation (3)]. The

Figure 1. Formation of CF₃CO₂Me during the oxidation of CH₄ by O₂ in a CF₃CO₂H solution of Co(OCOCF₃)₂: [Co] 0.90×10^{-4} M, O₂ initial pressure 3 atm, 180 °C; (\bigcirc) CH₄ initial pressure 20 atm; (\bigcirc) CH₄ initial pressure 10 atm.

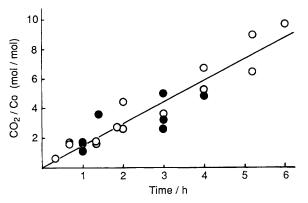


Figure 2. Time course of CO_2 accumulation in the gaseous phase over a CF_3CO_2H solution of $Co(OCOCF_3)_2$: $[Co] 0.90 \times 10^{-4}$ M, O_2 initial pressure 3 atm, 180 °C; (\bigcirc) no CH₄ added; (\bigcirc) CH₄ initial pressure 20 atm.

mechanism of the reaction may be more complicated than just a sum of the reactions (1) and (2). In addition to Co^{III} and Co^{II} trifluoroacetates, other cobalt compounds, *e.g.* Co^{IV} peroxo complexes, are thought to be involved in the reaction.

Smaller yields of CF_3CO_2Me were obtained using Mn- $(OCOCF_3)_2$ as a catalyst.

$$CH_4 + 1/2 O_2 + CF_3CO_2H \rightarrow CH_3OCOCF_3 + H_2O$$
 (3)

The reaction catalysed by Co^{II} trifluoroacetate was studied in more detail. Figure 1 shows that *ca*. 400% yield of CF₃CO₂Me based on the Co^{III} oxidative equivalent can be achieved, in agreement with the catalytic nature of the reaction. The decrease in the rate of CF₃CO₂Me accumulation may be caused by the precipitation of inactive Co^{II} fluoride compounds rather than by the further oxidation of CF₃CO₂Me. This assumption is supported by the previous experiments confirming the stability of CF₃CO₂Me towards oxidation both by Co^{III} and by O_2 in the presence of Co^{II} trifluoroacetate.

Comparable yields of CO_2 and CF_3CO_2Me were obtained, as shown in Figures 1 and 2. Under O_2 atmosphere, the quantities of CO_2 formed were independent of the presence of methane (Figure 2), so that methane cannot be the source of the CO_2 formed in either the catalytic [equation (1)] or the stoicheiometric [equation (3)] oxidation of methane.

Both pure CF_3CO_2H and CF_3CO_2H solutions of Co^{II} or Mn^{II} trifluoroacetates were found to undergo only slow decarboxylation under anaerobic atmosphere at 150—180 °C ($\leq 0.2 \text{ mol } CO_2 \text{ per mol } M^{II}$ for 6 h), unlike CF_3CO_2H solutions of Co^{III} or Mn^{III} trifluoroacetates. The rate of CO_2 evolution from the CF_3CO_2H solution of $Co(OCOCF_3)_2$ was found to increase with increasing O_2 partial pressure. These facts may be explained by homo- or hetero-lytic oxidative splitting of the M^{III} or IV-OCOCF₃ bond, resulting finally in CO_2 formation. This reaction, accompanied by the formation of a series of organofluorides, is not thought to be directly related to the oxidation of methane.

Received, 4th April 1990; Com. 0/01521K

References

- 1 A. E. Shilov, 'Activation of Saturated Hydrocarbons by Transition Metal Complexes,' D. Reidel, Dordrecht, 1984.
- 2 R. Pitchai and K. Klier, Catal. Rev., Sci. Eng., 1986, 28, 13.
- 3 E. Gretz, T. F. Oliver, and A. Sen, J. Am. Chem. Soc., 1987, 109, 8109.
- 4 A. Sen, E. Gretz, T. F. Oliver, and Z. Jiang, New J. Chem., 1989, 13, 755.
- 5 N. M. Emanuel, E. T. Denisov, and Z. K. Maizus, 'Liquid-Phase Oxidation of Hydrocarbons,' Plenum, New York, 1967.
- 6 E. S. Rudakov, 'Reactions of Alkanes with Oxidants, Metal Complexes and Radicals in Solutions,' Naukova Dumka, Kiev, 1985.
- 7 V. S. Belova, A. M. Khenkin, and A. E. Shilov, *Kinet. Katal.*, 1988, **29**, 1279.